
Scientific
Computing

Adam Lyon / Fermilab Scientific Computing Division

Fermilab Users Meeting, June 2013

Fermilab Users Meeting 2013 – Lyon

The Theme of This Talk

2

The next level of discoveries

requires the next level of computing

EfficiencyPower Usability CollaborationThe next level of: Scale

Fermilab Users Meeting 2013 – Lyon

What is taking us to the next level?

3

o BIG Data – process, store, move, plot
o New technology – provides new opportunities but also new difficulties
o Computing is more specialized – experts needed
o Complex computing needs to be usable
o Science demands reproducibility; Collaborate through code
o Discoveries demand more complicated analyses

The next level of: Power, Scale, Efficiency, Usability, and Collaboration

The Fermilab Scientific Computing Division is involved in all aspects of the
“next level of computing” evolution

Fermilab Users Meeting 2013 – Lyon

About the Fermilab SCD

4

Mission: Provide computing, software tools, and expertise to all parts of
the Fermilab scientific program including theory simulations (e.g. LQCD) and
accelerator modeling.

Work closely with each scientific program as our valued customers. We also
work as collaborators when SCD scientists/staff are directly involved with a
program (liaisons).

Create a coherent Scientific Computing program from many parts and many
funding sources

Encourage sharing of facilities, common approaches and tools, and re-use of
software where ever possible

Work closely with the Core Computing Division as part of an overall coherent
program

Fermilab Users Meeting 2013 – Lyon

The Fermilab SCD in a nutshell

5

160 people in the division, nearly all technically trained

26 Scientists, representation in nearly every experiment/program

Heavily matrixed
Future program and Experiments; Scientific Programs (CMS, Astro, REX); Scientific Computing Facilities

Liaisons: two-way conduit representing an experiment/program to the SCD and
the SCD to the experiment/program; an insider on both sides

Computing staff is shared amongst experiments/programs, especially for IF

Agility is important – as the lab changes mission and the computing landscape
changes, we adapt – and our structure allows us to do so

Especially important for computing at Intensity Frontier Experiments

A. Lyon / March 2013

Computing Requirements to do Physics

6

o Science demands reproducibility.
 Need control over our software
 Version control systems; software repositories

o We want to work together.
 Share ideas through code & algorithms

 Expert written common modular frameworks

o Do physics, not computing.
 Processing data should not be taxing on people
 Expert written common infrastructure and services

Next level of efficiency, usability, collaboration

A. Lyon / March 2013

The FIFE Project for IF and others

7

Happy
Physicist
(you?)

Results

Physics
task

Grid Jobs on
Fermigrid/

OSG

Files Databases (calib/
conditions, ...)

Job
submission

Data
Handling

DB
Applications

Output
Files

A collection of projects that provide common computing
services and interfaces needed to turn a physics task into results

16/369/23/10B. Casey, UD0

Frequency measurementFrequency measurement
spin leads momentum due to precession, positron trajectory follows spin

N

A

NA2

<A>=0.4

positron momentum fraction
Cut at 1.8 GeV

Michel spectrum
Asymmetry due to momentum cut

Figure of merit

0 20 40 60 80 100

C
ou

nt
s

pe
r 1

50
 n

s

102

10
3

10
4

105

106

s)µtime (
32 34 36 38 40

C
ou

nt
s

pe
r 1

50
 n

s

0
500

1000
1500
2000
2500
3000

3x10

s)µtime (
692 694 696 698

C
ou

nt
s

pe
r 1

50
 n

s

0
20
40
60
80

100
120

E821 total data set:
positrons versus time

Result

Next level of
usability and
scale

CMS has similar system (workflow, glide-ins); adopting oppo running too

Tailored for opportunistic running;

Fermilab Users Meeting 2013 – Lyon

Framework for the Intensity Frontier and others

8

Your
physics
code

More
physics
code

Your
friend’s
code

Dynamic
library
loading

Persistency Event Loop
& paths

Run/Subrun/
Event stores Messaging Configuration

Provenance
generation Metadata

Code you write Code you use from the
framework

Next level of usability and
collaboration

ART – A lite, forked version of CMSSW
tailored for IF

Modularity makes it easy to collaborate

Physicists write physics code and
algorithms, not infrastructure

Utilizes modern C++2011

Adopted by NOvA, Mu2e, MicroBoone,
LBNE (LarSoft) Muon g-2, DarkSide50

Art-daq and Multi-core Art

Adapting these ideas to Cosmology
and Astronomy

Fermilab Users Meeting 2013 – Lyon

The Free Lunch is Over

9

Historically, CPU speed doubled
every 18 months (Moore’s law)

But not anymore (since 2004)

Why no 10 GHz CPUs? Heat dissipation, power consumption, current leakage
(see http://www.gotw.ca/publications/concurrency-ddj.htm)

The increase in speed had been useful, sometimes crucial, for experiments

My awesome
computer
when I was
an undergrad

iPhone 5 is
1.3 GHz dual core
(300x clock spd,
125 times lighter,
1/10th the cost)

http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm

Fermilab Users Meeting 2013 – Lyon

More cores == more speed, maybe

10

Instead of speed doubling in 18 months,
number of cores doubles
(Can’t make them faster, so give you more
of them) The next level of computing power

But more cores means you need more memory
Fortunately, memory prices halve every ~18 months

Our standard is 2 GB memory/core; we purchase machines
with 64 cores (4x16) and 128 GB of memory

Typical use is to give each job a core -- one core per “slot”
(Event level parallelism)

Fermilab Users Meeting 2013 – Lyon

Implications of Multicore Machines (1)

11

All this power is wasted on single-service, single-use machines (servers,
interactive nodes, development boxes). To the Next level of efficiency

Solution: Virtualization and Clouds

Virtualization: Run many “virtual”
machines on a real machine (bare metal)
E.g. GPCF for interactive
nodes and lots of other areas in the SCD

Clouds: Dynamically provision virtual machines from a pool
FermiCloud –Used for development & testing, HA services for Fermigrid, Servers

Next level of scale (e.g. studying Cloud Bursting to address usage spikes;
CMS HLT)

But virtualization is not optimized for everything (e.g. building code)

Fermilab Users Meeting 2013 – Lyon

Implications of Multicore Machines (2)

12

The 2 GB/core memory limitation can be problematic

2 GB may not be enough for reconstruction algorithms
E.g. CMS reconstruction with large pileup, LBNE hit finding

Could idle some cores to take the memory, but problematic and wasteful
Sites are reluctant to devote resources to whole-node job queues

Next level of efficiency: Split up the processing of an event among multiple
cores (parellelization). But now you have to handle task dependencies

find em
shwrs

find
hits find tracks reco e

Find EM cal showers, Find tracker hits,
Find tracks, Reconstruct electrons,
Reconstruct photons

Core 1

Core 2

Sites need to give >1 core/job, but won’t
have permanently idle cores

find em
shwrs

reco e

find
hits find tracks

reco photons

reco photons

Fermilab Users Meeting 2013 – Lyon

Parallelization of processing tasks

13

Threading frameworks help with coding the dependencies
(e.g. Intel Thread Building Blocks – TBB)

Both CMS and ART Framework
groups in the SCD are adapting

C.Jones Threaded Framework CHEP 2012

Concurrency Limit

Short periods of high module level parallelism

Long periods with only 1 or 2 modules
First period is tracking
Second period is photon conversion finding

Parallelizing within those module would be beneficial
86

0

5

10

15

20

25

30

0 8 16 24 32

Number of Running Modules vs Time for High Pileup RECO

N
um

be
r o

f c
on

cu
rre

nt
ly

 ru
nn

in
g

m
od

ul
es

Average timeline for processing one event (sec)

Tracking Photon conversion finding

Friday, May 18, 12

E.g. CMS reconstruction,
Opportunities for deep
parallelization?

Need to be conscious of i/o and network bandwidth
Don’t want cores repeating operations

Event based parallelism is not particularly suited for HPC (e.g. BlueGene)
But CMS is studying their use (1 yr initiative)

Fermilab Users Meeting 2013 – Lyon

Parallelization useful for DAQs too

14

Art-daq

Similar online/offline systems have advantages

Adopted by DarkSide50 with HPC networking (Infiniband)BIERY et al.: artdaq: AN EVENT-BUILDING, FILTERING, AND PROCESSING FRAMEWORK 7

Fig. 2. The major components of the prototype DarkSide-50 event-building system. Solid lines indicate inter-process communication, done mostly through MPI.
Dashed lines indicate communication between different threads in the same process.

(32 total cores), with 64 GB of RAM. Using actual digitizer
test stand data, we created a data generation software library
capable of generating event fragments, each representing the
data of a board with eight channels. We used three more nodes,
each identical to the event-processing node, to emulate the data
generation of the five front ends (for a total of 40 channels of
data). On the single processing node we ran five fragment-re-
ceiving processes, each tied directly to one of the data genera-
tors through the IB network. In order to fully utilize the available
32 cores on the event-processing node, we configured artdaq
with five event processors This configuration yields five parallel
full-event streams for algorithms to operate on.
We used this system to evaluate the rate at which a single

node can ingest data from the digitizers and perform the event-
building task, the rate at which we can run a compression algo-
rithm on the data stream, and the compression ratio that can be
achieved.
We chose to use Huffman coding [11] in our first compres-

sion algorithm, partly due to its simplicity, speed, and ability to
achieve reasonable compression. We parallelized the algorithm
using OpenMP [12], using one thread for the compression of
the data from each board, yielding five-way parallelism for the
processing of a single event. With five available event streams,
each performing five-way parallelism, we are able to utilize 25
of the 32 cores available on the machine.
With this configuration, we are able to operate the system at

an average of 246 events/s, while achieving an average com-
pression ratio of 4.9:1. This is approximately five times faster
than the required 50-Hz rate.

C. Mu2e Multi-Node Event-Building
We have begun studying the feasibility of developing a

full-rate DAQ (one which does little or no hardware filtering)

event-filtering system for the Mu2e experiment [13]. Providing
a software system that will perform event filtering at full rate
will currently require an aggregate throughput of about 30
GB/s from approximately 275 front-end detector sources. The
filtering software will need to reduce the input data stream to
about 30 MB/s. Assuming that digitized waveform data can be
made available on a PCIe bus within a COTS computing node
from the front-end hardware, the questions we are exploring
are: how many nodes will it take to 1) handle this input data
rate and 2) perform the event-filtering functions. We have
initial results for the first of these questions. Because of the
architectural similarity with DarkSide-50 and similar high
data-rate requirement, we have been able to utilize a system of
five nodes (of the same configuration described earlier) of the
IB-connected system for these tests.
The configuration of the event builders and data generators

is somewhat different than the DarkSide-50 configuration. Here
we use the IB network entirely for the event building and drive
it using our MPI-based components.
We simulate each of the five nodes being connected to the ex-

periment’s front-end hardware by having each node run a data-
generator process. Each data-generator process sends its data di-
rectly to a single fragment-receiver process on the same node.
Each node also runs an event-builder process. Each fragment
receiver sends fragments to all event builders. This means that
each node effectively sees one-fifth of the detector on readout
and also one-fifth of the full events for processing and analysis.
If the system scaled perfectly, we would expect a rate that is five
times that of one machine. Partly because of the many-to-one
function that being performed for event building, this is not pos-
sible. With this 5 5 configuration, and without tuning the MPI
implementation, we measured an average aggregate throughput
of 3.6 GB/s (or approximately 730 MB/s per node).

Next level of power, scale and efficiency

Fermilab Users Meeting 2013 – Lyon

General Purpose GPUs

15

Massively parallel systems on a chip
 Thousands of cores
 GPGPUs are best suited for “Data Parallelism” - running the same
 specialized task on different pieces of distributed data
 Contrast with multicore CPUs - best suited for “Task Parallelism”

Next level of power, scale and efficiency

Can see orders of magnitude speed improvements over CPUs for appropriate use
cases (e.g. 200x speed up)

Need C/C++ extensions (CUDA, OpenCL) - not trivial to program

GPGPU Farms exist – challenge is to integrate with CPU based workflows

Fermilab recently installed a 152 GPU farm for Lattice QCD
(part of wider 5 yr project)

Fermilab Users Meeting 2013 – Lyon

Next generation GPGPUs and Beyond

16

Next level of power, scale and efficiency - and usability?

o GPGPUs with conventional ARM processor on board
Offload administrative tasks – e.g. moving data

o INTEL Xeon Phi Co-processor – Many integrated Cores (MIC)
[actually 60 souped up pentiums cores]

Runs Linux – Easier to program – Optimize code for MIC but will run on
regular CPUs

Designed with science applications in mind

These are under study for LQCD
Can we use them elsewhere in HEP?

Fermilab Users Meeting 2013 – Lyon

More Parallelization efforts in the SCD

17

!
!
!
!

Transforming GEANT4 for the
Future

!
!
!
!

Report from the Workshop on Transforming GEANT4
for the Future,

Rockville Maryland, USA
May 8-9, 2012

DRAFT
!

Robert Lucas and Robert Roser, Editors and Workshop Chairs
!

Transform Geant4 to run efficiently
on modern and future multi-core
computers and CPU/GPU hybrids

Joint 2 year initiative between HEP
and ASCR (Advanced Scientific
Computing Research) with SCD
involvement

Efforts to parallelize Root as well

Fermilab Users Meeting 2013 – Lyon

Next level of Simulations

18

Fermilab is leading the ComPASS Project

Multi-institution collaboration of computational
accelerator physicists

Developing HPC accelerator modeling tools

This and many previously mentioned projects part
of SciDAC (Scientific Discovery through Advanced
Computing)

Joint HEP-ASCR funding to advance the HEP
mission by fully exploiting DOE SC leadership
class computing resources

Fermilab Users Meeting 2013 – Lyon

Conclusions

19

The next level of: Power, Scale, Efficiency, Usability, and Collaboration

The Fermilab Scientific Computing Division is involved in all
aspects of the “next level of computing” activities

Preparing for the challenges of
 o 14 TeV LHC running at CMS
 o Present and future Intensity and Cosmic Frontier experiments
 o Exploiting new technology for LQCD, HEP processing, and DAQs
 o BIG DATA
 o Providing easier and effective tools to collaborations of physicists

The next level of discoveries requires the next level of
 computing –– and is happening now!

Fermilab Users Meeting 2013 – Lyon

Parallelization and sharing memory

20

Studies: Track-finding — scaling, interference.
Scaling: full-machine event rate by total thread count,
grouped by threads per process. TBB,
struct-of-arrays.

Total number of threads

Ev
en

t r
at

e
(e

ve
nt

s/
se

c)

0

10

20

30

0 20 40 60 80 100

●
●
●

●
●
●
●
●
●
●

●
●
●
●
●
●
●

●
●
●

●

●
●

●●
●
●

●
●
●●

●●●●
●●●●

●●
●
●●●●●

●

1
2
3
4
5
6
7
8
32

●

12 / 15

Test NOvA reconstruction (in multi-core Art) on a 32 core machine

oversubscription of cores
happens here

of simultaneous
event processing
threads per job

o One thread/job gives you maximal throughput, but no memory sharing
o Two threads/job has nearly same throughput, but thread pairs can share memory
 So now you can fit that big 2 GB geometry DB into memory, since have 4 GB/job
o 32 threads/job – bad idea

